Thermal Performance Enhancement Using Absorber Tube with Inner Helical Axial Fins in a Parabolic Trough Solar Collector

نویسندگان

چکیده

In the present work, a parabolic trough solar (PTC) collector with inner helical axial fins as swirl generator or turbulator is considered and analyzed numerically. The three-dimensional numerical simulations have been done by finite volume method (FVM) using commercial CFD code, ANSYS FLUENT 18.2. spatial discretization of mass, momentum, energy equations, turbulence kinetic has obtained second-order upwind scheme. To compute gradients, Green-Gauss cell-based employed. This work consists two sections where, first, four various geometries are appraised, in following, selected schematic from previous part selected, pitches including 250, 500, 750 1000 mm studied. All results utilizing FVM. Results show that thermal performance improvement 23.1% could be achieved one proposed innovative collectors compare to simple one. Additionally, minimum maximum (compare case without fins) belong P = 250 14.1% and, 21.53%, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid

In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...

متن کامل

Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid

In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...

متن کامل

Manufacturing a trough parabolic solar collector and predicting its theoretical performance

The aim of this research was manufacturing a parabolic trough solar collector in which reflecting surface is made of mirror steel rather than usual mirror and also predicting its theoretical performance.by adjusting planar ⩝ -shaped structures parallel to each other and welding them together, the main supporting structure was assembled and a parabolic-shape Teflon arc was installed in the apert...

متن کامل

Experimental Investigation of Thermal Performance in an Advanced Solar Collector with Spiral Tube

This paper reports the thermal performance of a new cylindrical solar collector based on an experimental investigation with this difference that instead of the collector tube with absorbent coating, coil into a spiral copper tube is placed in the center of the collector. The spiral shape of the tube, heat transfer without disruption or increase the heat transfer area, is increasing. In this cas...

متن کامل

Experimental Investigation on the Effect of Partially Metal Foam inside the Absorber of Parabolic Trough Solar Collector

In the present work the efficiency of a solar parabolic trough has been investigated experimentality. parabolic trough solar collector constitute a proven source of thermal energy for industrial process heat and power genaration. The impact of  using the partially porous media in the absorber on the efficiency of PTC (parabolic trough collector) has been investigated. The porosity of copper foa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11167423